***GasLab's offices will be closed starting at 5:00pm ET. Thursday, July 2 and will reopen Monday, July 6 at 8:30am ET. in observance of the US Independence Day holiday.**


How does an Oxygen Sensor Work?

how does an oxygen sensor work

Oxygen sensors are used in various applications such as automotive industries, medical facilities, industrial safety, modified atmospheric packaging and much more. Each uses a different type of sensor technology that is best suited for the individual application or environment. 

Regardless of the application, majority of oxygen sensors are designed to measure the quantity of oxygen in the air or in an indoor closed environment. What's important to keep in mind, is that oxygen sensors typically measure between 0-21% oxygen and also can be used for monitoring oxygen depletion. 

What are the different types of oxygen sensors?

  1. Electrochemical oxygen sensor
  2. Zirconia oxygen sensor
  3. Optical oxygen sensor
  4. Clark oxygen sensor
  5. Infrared oxygen sensor
  6. Electro galvanic sensor
  7. Ultrasonic oxygen sensor
  8. Laser oxygen sensor
  9. Paramagnetic oxygen sensor

In general, most oxygen sensors measure oxygen levels in gas or liquid using one of three technologies: electrochemical, zirconia or optical. Other oxygen measurement techniques such as the Clark-type, infrared, ultrasonic, laser, paramagnetic, radioisotope, magnetic resonance and electron resonance are found in highly specialized medical, industrial and scientific applications.

1. Electrochemical oxygen sensor

Electrochemical oxygen sensors are primarily used to measure oxygen levels in ambient air. They measure a chemical reaction within the sensor that creates an electrical output proportional to the oxygen level. Because some electrochemical sensors produce their own analog current, they can be self-powered, making them useful for measuring oxygen gas battery-operated underwater diving and hand-held personal safety devices. Examples could include breathalyzers, respiratory sensors, and blood glucose sensors. 

replacement oxygen sensor

The challenge for electrochemical sensors is that over time the chemical reaction stops, typically between 1 and 3 years depending on the sensor design. Storing them in an oxygen-free environment will not add to the life span of the sensor. However, because of their rugged design, low cost, and self-power electrochemical sensors are used in many devices.

In addition, electrochemical sensors depend highly on specific chemical processes, these rates must be aligned with temperature, as the output of most electrochemical sensors will rely heavily on temperature compensation to provide reliable readings over a broad scope of ambient conditions. 

In terms of sensor advantages, electrochemical sensors are sought after due to their lower power requirements, lower detection limits, and are often less directly affected by interfering gases. 

AlphaSense is one of the most popular manufacturers of electrochemical oxygen sensors. Their sensors are used in dozens of 4-gas detectors and portable safety meters used worldwide.

2. Zirconia oxygen sensor

zirconia oxygen sensor

Zirconia oxygen sensors are a type of electrochemical sensor. Zirconia dioxide is coated with a thin layer of platinum to form a solid‐state electrochemical fuel cell. Carbon monoxide, if present in the test gas, is oxidized by O2 to form CO2 and thereby triggers the flow of current. The zirconia sensor does not directly sense O2, but rather the difference between the concentration of O2 in the exhaust gas and in the normal air.

While zirconia oxygen sensors are most commonly used in cars to control air-fuel ratios, they are also important in industrial applications. For example, SST’s Zirconia Oxygen Measurement Sensor System uses this technology to measure the oxygen content in flue gases, combustion control systems, coal, oil, gas, biomass, and oxygen generation systems. 

Another feature of the Zirconia Oxygen Measurement Sensor System is that it holds at the heart of its sensor, a small zirconium-based element and does not require a reference gas. 

When we look at sensor advantages, regardless of high temperatures and oxygen pressures, the possible application integrations are nearly endless making this sensor a valued product for integrating into many industries.

3. Optical oxygen sensor

Optical oxygen sensors are based on the principle of fluorescence quenching by oxygen. They rely on the use of a light source, a light detector, and a luminescent material that reacts to light. In many fields, luminescence‐based oxygen sensors are replacing the Clark electrode.

oxygen sensor

The principle behind fluorescence quenching by molecular oxygen has long been understood. Some molecules or compounds, when exposed to light, will fluoresce (i.e. emit light energy). However, if oxygen molecules are present, the light energy is transferred to the oxygen molecule resulting in less fluorescence. By using a known light source the amount of light energy detected is inversely proportional to the number of oxygen molecules in the sample. Therefore, the less fluoresce detected, the more oxygen molecules must be present in the sample gas.

In some sensors, the fluorescence is detected twice at a known time interval. Instead of measuring the total fluorescence, the drop in luminescence (i.e. fluorescence quenching) over time is measured. This decay-based time method allows for a simpler sensor design.

An example of a sensor that measures ambient oxygen levels using fluorescence quenching by oxygen is the LuninOX LOX-02. While it has the same footprint as traditional electrochemical sensors, it does not absorb oxygen and it has the advantage of a much longer lifespan.

Common applications that involve optical sensors include medical facilities, lasers, imaging systems, and fibers. In regards to sensor advantages, many find optical sensors to hold greater sensitivity, wider dynamic range, distributed configuration and multiplex capabilities. 

modified atmosphere packaging sensor

Another example is the TecPen Handheld Oxygen Sensor. The TecPen uses a thin coating of luminescent dye on the sensor and a micropump to pull the air sample past the fluorescing dye. The dye is excited at 507 µm and the resulting fluorescence event recorded at 650 µm. The duration of this fluorescence event – known as the lifetime – depends on the quantity of adsorbed oxygen in the sensor layer and can thus be used to determine the oxygen concentration.

Because it uses the faster optochemical sensing technology it is able to take a measurement in 3 seconds.

4. Clark electrode oxygen sensor

Blood Glucose Testing

The Clarke electrode is a type of electrochemical sensor. It measures oxygen levels in liquid using a cathode and an anode submerged in an electrolyte. It was invented to measure oxygen levels in the blood during cardiac surgery. Today it is commonly used in portable blood glucose monitoring devices that require a drop of blood. The sensor uses a thin layer of glucose oxidase (GOx) on an oxygen electrode. By measuring the amount of oxygen consumed by GOx during the enzymatic reaction with the glucose, the blood glucose level can be calculated and displayed.

Additional Clarke-type sensors are available which include measuring of ozone (O3), Hydrogen Peroxide (H202), Hydrogen (H), and Hydrogen Sulphide (H2S).

5. Infrared oxygen sensor

By UusiAjaja - Own work, CC0, Link

Infrared pulse oximeters, commonly called fingertip oxymeters or finger pulse oximeters, are oxygen sensors that measure the amount of oxygen in the blood by light. They are most often used in low-cost fingertip or earlobe devices to measure oxygen saturation in the body for home medical use.

To work, infrared and red light are both pulsed through a thin layer of skin and measured by a photo diode. Because the wavelengths of the 2 light sources are different, the ratio of absorption of light through the skin is proportional to the amount of oxygenated hemoglobin in the arteries.

The advantages to purchasing infrared oxygen sensors are due to the fact that they are noninvasive, cost-effective, compact and easily can quickly detect low oxygen levels in the blood. Their downside is that some of the less expensive models are not approved as medical devices.

6. Electro galvanic sensor

Electro Galvanic Oxygen Sensor

An electro-galvanic oxygen sensor is a fuel cell based on the oxidation of lead that produces an electrical output proportional to the oxygen level inside the sensor. It is similar to an electrochemical sensor in that it consumes itself over several months as it is exposed to oxygen.

Because electro galvanic sensors are relatively low-cost and dependable devices that can measure 0-100% oxygen levels, they are used as medical oxygen sensors in many hospital ventilators as well as SCUBA diving equipment. The downside of electro galvanic oxygen sensors like medical oxygen cells is that they typically have a lifespan measured in months.

7. Ultrasonic oxygen sensor

ultrasonic oxygen sensorUltrasonic oxygen sensors use sound speed to measure the amount of oxygen in a gas or liquid sample. In liquid, upstream and downstream sensors measure the velocity difference between high-frequency sound waves. The change in velocity is proportional to the amount of oxygen in the sample. In gases, the sound speed varies as the molecular composition of the gas varies. This makes ultrasonic oxygen sensors useful for anesthesia ventilators or oxygen generators where the output is a known concentration of oxygen gas. Typical applications that require ultrasonic oxygen sensing methods are hospitals, gas analysis, or applications involving oxygen concentrators or portable oxygen generators. 

8. Laser oxygen sensor

Tunable Diode Laser (TDL) oxygen sensors rely on spectral analysis. A laser beam at the wavelength of oxygen is directed through a gas sample to a photodetector. The amount of light absorbed by the oxygen molecules is proportional to the number of molecules in the sample.

The mechanism of the laser oxygen sensor was created to design analyzers for real-time measurement of gases such as H20, H2S, CO2, NH3, and C2H2 in gas streams. Many sensors have been used in various applications such as combustion systems, power plants, coal, and waste incinerators. 

9. Paramagnetic oxygen sensor

Paramagnetic oxygen sensors rely on the fact that oxygen molecules are attracted to strong magnetic fields. In some designs, the sample gas is introduced into the sensor and passed through a magnetic field. The flow rate changes in proportion to the oxygen level in the gas. In a variation on this design, the oxygen in the magnetic field creates a physical force on glass spheres that are measured. While not a common sensing technology, it can be used in industrial process control applications where a zirconia oxygen sensor cannot.

Additional advantages of using a paramagnetic oxygen sensor are that the sensors are insensitive to mechanical shock, hold outstanding linearity, and are incredibly stable. 










Image by pixabay

Older Post Newer Post